Name:	Class:	Date:		
		Mark	/ 10	%

[1]

1) Using the diagram below, express the vector \overrightarrow{ML} in terms of **a** and **b**.

2) Find the vector formed when the vector 2d-3c is added to point D. Write the vector as capital letters e.g. \overrightarrow{AB} .

3) Triangle PQR is shown below where $\overrightarrow{PQ} = \mathbf{t}$ and $\overrightarrow{PR} = \mathbf{x}$.

Express the following vectors in terms of \mathbf{t} and \mathbf{x} .

a) \vec{PQ} b) \vec{RP} c) \vec{QR} d) \vec{RQ}

4) OABC is a parallelogram where $\overrightarrow{OA} = \mathbf{x}$ and $\overrightarrow{OC} = \mathbf{z}$.

Express the following vectors in terms of \mathbf{x} and \mathbf{z} .

a) \overrightarrow{AB} b) \overrightarrow{BC} c) \overrightarrow{OB} d) \overrightarrow{AC}

5) ABCDEF is a regular hexagon where $\overrightarrow{OA} = \mathbf{t}$ and $\overrightarrow{OB} = \mathbf{y}$.

Express the following vectors in terms of **t** and **y**.

a) AB	b) <i>DB</i>	c) OC	d) <i>FD</i>
---------	--------------	-------	--------------

[1]

[1]

6) ABCD is a rectangle where $\overrightarrow{AB} = \mathbf{t}$, $\overrightarrow{BC} = \mathbf{y}$ and M is the mid-point of AD.

Express the following vectors in terms of **t** and **y**.

a) \vec{AM} b) \vec{BM} c) \vec{MC}

	[1]
7) ABCD is a trapezium with BC parallel to AD.	[1]
M is the midpoint of AD and N is the midpoint of BC.	

Given that $\overrightarrow{AB} = 2\mathbf{c}$, $\overrightarrow{BC} = 2\mathbf{a}$ and $\overrightarrow{AD} = 6\mathbf{a}$, express \overrightarrow{MN} in terms of \mathbf{a} and \mathbf{c} .

8) OABC is a parallelogram where $\overrightarrow{OA} = 6\mathbf{x}$ and $\overrightarrow{OC} = 6\mathbf{z}$. D is the point on AC for which $AD = \frac{1}{3}AC$.

Express \overrightarrow{OD} in terms of **x** and **z**.

9) ABCD is a trapezium with BC parallel to AD and AD = 2BC. R is the point on AD for which AR:RD = 3:1.

Given that $\overrightarrow{AB} = \mathbf{z}$ and $\overrightarrow{BC} = \mathbf{k}$, express \overrightarrow{RC} in terms of \mathbf{z} and \mathbf{k} .

[1]

10) ABCDEF is a regular hexagon where $\overrightarrow{AB} = \mathbf{z}$ and $\overrightarrow{AC} = \mathbf{y}$.

Express the following vectors in terms of \mathbf{z} and \mathbf{y} .

a) \vec{BE}

b) \overrightarrow{CE}

[1]

Solutions for the assessment Vector Geometry of grids and 2D shapes

1) $\overrightarrow{ML} = 3\mathbf{a} \cdot \mathbf{b}$ **2**) Vector = \overrightarrow{DI}

3) a)
$$\overrightarrow{PQ} = \mathbf{t}$$
4) a) $\overrightarrow{AB} = z$ b) $\overrightarrow{RP} = -\mathbf{x}$ b) $\overrightarrow{BC} = -x$ c) $\overrightarrow{QR} = -\mathbf{t} + \mathbf{x}$ c) $\overrightarrow{OB} = x + z$ d) $\overrightarrow{RQ} = \mathbf{t} - \mathbf{x}$ d) $\overrightarrow{AC} = z - x$

- 5) a) $\overrightarrow{AB} = y t$ b) $\overrightarrow{DB} = t + y$ c) $\overrightarrow{OC} = y - t$ d) $\overrightarrow{FD} = y - 2t$ 6) a) $\overrightarrow{AM} = \frac{y}{2}$ b) $\overrightarrow{BM} = \frac{y}{2} - t$ c) $\overrightarrow{MC} = \frac{y}{2} + t$
- 7) $\overrightarrow{MN} = 2c 2a$ 8) $\overrightarrow{OD} = 4x + 2z$
- **9**) $\overrightarrow{RC} = z \frac{k}{2}$

10) a) $\vec{BE} = 2y - 4z$ b) $\vec{CE} = y - 3z$

Copyright Mathster.com 2014. Licensed by Your School with permission to redistribute